The effective equivalence of geometric irregularity and surface roughness in determining particle single-scattering properties.
نویسندگان
چکیده
This study investigates the effects of geometric irregularity and surface roughness on the single-scattering properties of randomly oriented dielectric particles. Starting from a regular crystal with smooth faces, effects of roughening are compared with effects of perturbing the regular configuration of the smooth faces. Using the same slope distribution for small roughness facets and tilted faces provides a natural way to compare the effects on the single-scattering properties. It is found that the geometric irregularity and surface roughness have similar effects on the single-scattering properties of an ensemble of randomly oriented particles. In other words, particles with irregular geometries and those with surface roughness are optically equivalent if the slope distributions are the same. Furthermore, an ensemble of particles with irregular geometries can be used as an effective approximation for simulation of the scattering properties of roughened particles, and vice versa. This approach also provides new interpretation of the observed, relatively featureless and smooth, scattering phase functions of naturally occurring particles.
منابع مشابه
OPTICAL PROPERTIES OF THIN Cu FILMS AS A FUNCTION OF SUBSTRATE TEMPERATURE
Copper films (250 nm) deposited on glass substrates, at different substrate temperatures. Their optical properties were measured by ellipsometery (single wavelength of 589.3 nm) and spectrophotometery in the spectral range of 200–2600 nm. Kramers Kronig method was used for the analysis of the reflectivity curves of Cu films to obtain the optical constants of the films, while ellipsometery measu...
متن کاملThe effects of surface roughness on the scattering properties of hexagonal columns with sizes from the Rayleigh to the geometric optics regimes
Effects of surface roughness on the optical scattering properties of ice crystals are investigated using a randomwave superposition model of roughness that is a simplification of models used in studies of scattering by surface water waves. Unlike previous work with models of rough surfaces applicable only in limited size ranges, such as surface perturbation methods in the small particle regime ...
متن کاملExploring the Surface Roughness of Small Ice Crystals by Measuring High Resolution Angular Scattering Patterns
Surface roughness of atmospheric ice particles is an important yet poorly investigated microphysical property in the context of the climate impact of cirrus and mixedphase clouds. Measurements of single particle two-dimensional light scattering patterns have been shown to be a promising method to identify particle roughness in natural clouds. This method was applied in a laboratory study on the...
متن کاملStatistical Analysis and Optimization of Factors Affecting the Surface Roughness in UVaSPIF Process Using Response Surface Methodology
Ultrasonic vibration assisted single point incremental forming (UVaSPIF) is based on localized plastic deformation in a sheet metal blank. It consists to deform gradually and locally the sheet metal using vibrating hemispherical-head tool controlled by a CNC milling machine. The ultrasonic excitation of forming tool reduces the vertical component of forming force. In addition, application of ul...
متن کاملApplication of orthogonal array technique and particle swarm optimization approach in surface roughness modification when face milling AISI1045 steel parts
Face milling is an important and common machining operation because of its versatility and capability to produce various surfaces. Face milling is a machining process of removing material by the relative motion between a work piece and rotating cutter with multiple cutting edges. It is an interrupted cutting operation in which the teeth of the milling cutter enter and exit the work piece during...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Optics express
دوره 22 19 شماره
صفحات -
تاریخ انتشار 2014